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A STUDY OF SUPERSONIC SURFACE SOURCES- 
THE FFOWCS WILLIAMS-HAWKINGS EQUATION AND THE 

KIRCHHOFF FORMULA' 

F. Farassat" and Kenneth S. Brentner? 
NASA Langley Research Center, 

Hampton, Virginia 

Abstract 

In this paper we address the mathematical problem 
of noise generation from high speed moving surfaces. 
The problem we are solving is the linear wave equation 
with sources on a moving surface. The Ffowcs Will- 
iams-Hawkings (FW-H) equation as well as the govern- 
ing equation for deriving the Kirchhoff formula for 
moving surfaces are both this type of partial differential 
equation. We give a new exact solution of this problem 
here in closed form which is valid for subsonic and 
supersonic motion of the surface but it is particularly 
suitable for supersonically moving surfaces. This new 
solution is the simplest of all high speed formulations of 
Langley and is denoted formulation 4 following the tra- 
dition of numbering of our major results for the predic- 
tion of the noise of rotating blades. We show that for a 
smooth surface moving at supersonic speed, our solu- 
tion has only removable singularities.Thus it can be 
used for numerical work. 

1. Introduction 

The problem of noise generation from moving bod- 
ies is very important in aeroacoustics. Two current 
methods of attacking this problem are the acoustic anal- 
ogy and the Kirchhoff formula for moving surfaces. The 
acoustic analogy method is based on different forms of 
the solution of the Ffowcs Williams-Hawkings (FW-H) 
equation'. This is a linear wave equation with sources 
on a moving surface. The Kirchhoff formula is also 
derived from a linear wave equation with sources on a 
moving surface2. For simplicity, we refer to this wave 
equation here as the Kirchhoff (K) equation. Using 
generalized function theory, both the FW-H and the 
K equations can be written with inhomogeneous source 
terms involving the Dirac delta function with support on 
the moving surface f = 0 and the first derivatives of this 
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delta function. The method of solution of these two 
equations are, thus, identical. 

Obtaining various forms of the solution of these 
equations for subsonic surfaces is fairly easy. These 
solutions (Formulations 1 and 1A of Farassat) have been 
published e l ~ e w h e r e ~ - ~ .  We will not, therefore, address 
the subsonic case here. We mention that the cominon 
forms of the solution for subsonic surfaces have a Dop- 
pler singularity which make them unsuitable for super- 
sonically moving surfaces. To obtain new forms of 
solution of the FW-H and the K equations for supersonic 
surfaces, we must integrate the Green's function of the 
wave equation in a different way than the subsonic 
case'". This was fully recognized by Ffowcs Williams 
and Hawkings' and they laid the foundation for the 
work we present here. The solution of the supersonic 
problem is considerably more difficult than the subsonic 
case and it has taken a lot longer to fully overcome the 
many mathematical obstacles. 

To understand the nature of the complexities 
involved, one must recognize that the problem as treated 
here is four dimensional. We are interested in formula- 
tions which are suitable for efficient numerical noise 
prediction from rotating machinery. This requirement 
puts a restriction on what forms of the solution of the 
FW-H and the K equation are acceptable to us. In 
practice, it has been found that the common formula- 
tions for subsonic surfaces are much more efficient than 
the supersonic formulations even if the latter can also be 
used for subsonic surfaces. Thus, one is forced to use 
more than one formulation in any noise prediction code 
based on the FW-H and K equations. 

In noise calculation, a moving surface, such as a 
blade, is divided into panels and the noise generated by 
each panel is summed up to get the total noise from the 
surface. This means that the FW-H and K equation must 
be solved for an open surface, e.g., a panel on the 
moving surface. Thus we must solve these two equa- 
tions with inhomogeneous source terms that have a 
Heaviside function multiplying the Dirac delta functions 
which describe the open surface. The mathematical 
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treatment of these inhomogeneous source terms pro- 
duces an additional complexity in obtaining solutions of 
these equations for the supersonic case. 

We next find all the surface contributions of the last 
term of Eq. (1) by taking the space derivatives explicitly 
and using the rules of generalized d i f fe ren t ia t i~n~>~>~.  
We get 

In the subsonic case, the Doppler factor appears as 
the result of integration of the source time variable in the 

Lagrangian frame is introduced in which the surface is 
time independent. This step makes the problem essen- 
tially three dimensional. To get other forms of the solu- 
tion suitable for a supersonically moving surface, one 
must use integration over the influence surface of the 
observer space-time variables (x, t )  which we call the 

a 
Green’s function solution of the wave equation after a 0 2 P f  = , , c L P u n - ( P - P ~ ) v n l ~ ( f ) }  

1 2 
+ 6 [ P V n U i  - (P - P0)C n i 1 w  

+ L J n i  ax S ( f > + -  axiaxj H ( f  

2 a T~ 
a {  

J T . .  

X - surface . This surface is more fundamental to the 
solution of the wave equation than the actual moving 
surface over which the subsonic formulations are 
integrated. 

In the next section the governing equations of the 
problem under consideration are presented. In Section 3, 
we will give a new solution of the FW-H and the K 
equations in closed form for supersonic surfaces. In Sec- 
tion 4 we will show that the singularities of the solution 
are integrable. The concluding remarks follow. 

2. The Governing Equations 

Q1+ Q2 + Q3 + Q4 (2) 

We ~ $ 1  then consider a; open surface described by 
f = O ,  f > 0 where f = f = 0 is the equation of the 
edge of this open surface2’6. We define 7 such that 
V f = v where-v is the unit inward geodesic normal to 
the edge f = f = 02>6. To calculate the noise from 
this open surface, we must multiply Sf) in Ql, Q2 and 
Q3 by the Heaviside function H (  f )  . We will next use 
the concept of restriction of a variable to the surface f = 

0 and then take the derivatives of Ql and Q2 terms 
explicitly6. We use a tilde under a symbol to signify 
restriction. 

The Ffowcs Williams-Hawkings Equation and the 
Kirchhoff equation are quite well-known in 

equations suitable for our work. The FW-H equation for 
a moving surface f ( x ,  t )  = 0 where f > 0 outside the 
body is 

Introducing the notations 

aeroacoustics. We will need a special form of these E = P u , - ( P - P o ) V ,  (3 a) 

(3b) 
2 

Ei = pv  n z  u.-(p-po)c ni, 

we have 

a a 0 2 P f  = - { [Pun- (P-P , )vn16( f ) }  at Ql = at [ E  H ( f ) W ) l  

a 2 
Q2 = [Ei H ( f ) W ) l  where p f  is (p - po)c , p is the density, and po and c 

are the density and speed of sound of undisturbed 
medium. The local normal fluid and body velocities are 

tensor is denoted Tij and p is the surface pressure on 
f = 0. Note that we assume that the surface f is defined 

to this surface. The Heaviside function is denoted H O .  
As proposed by Ffowcs Williams and Hawkings’, the 
moving surface f = 0 can be penetrable and we assume 
so here. 

denoted by u, and v,, respectively. The Lighthill stress 

such that V f = n where n is the unit outward normal 

= v2 ’ E ,  H ( f > W  + E , V i S ( f > W  

-2 H f E n n ,  H ( f > W >  

+ Eini H ( f P ’ ( f  ( 5 )  
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Here, v, is the local velocity of the edge along the geo- 
desic normal v with components vi, ET is the projection 
vector E, on the surface off = 0 and Hfis the local mean 
curvature of the surfacef= Os,’. The surface divergence 
o f E T  is v2 . ET ’. using Eqs. (4) and (51, we get 

Ql + Q2 + Q3 = q1 H ( f > W >  + q2 H ( f P ’ ( f )  

+ q 3  S ( f > S ( f >  ( 6 )  

where we have defined the following symbols 

J T ,  . 
q1 = - n i + l J + V 2 . E T - 2  ax , HfEn (7) 

q3  = P(VnUv - UnVv) + (P - Po)VnVv (9) 

In Eq.Eq.Eq. (7), E, = E,n, and M, = v,/c is the local 
Mach number on f = 0. Note that q2 in Eq. (6) is 
restricted to the surfacef= 0. Also note that in Eq. (5), 
we have dropped the restriction on any variable that 
multiplies S(f,  if it is not differentiateahus we write 8 
and not E .  There is also no need to use restriction sign 
on V2 . E T  since ET is already restricted tof=  0. It is 
important to recognize that 8 is the rate of change of E 
as measured by an observer on the surface. 

The FW-H equation for an open penetrable surface 
moving at supersonic speed is: 

02P’  = 41 H ( f > W >  + q 2  H ( f > s ’ ( f >  

+ q 3  S(f>S(f> (10) 

A similar equation is also obtained for derivation of the 
Kirchhoff formula2 for an open surfacef= 0, f > 0 

where we have: 

q1 = - w - - M  1 apf - - - - ( M  1 a p ’ ) + 2  H p‘ (11) an c n at c a t  - n  - f 

q3  = MnMvP’ (13) 

We will go one further step here in preparation of 
obtaining the new formulation. We note that for a sur- 
facef= 0, lVfl = 1 , we have the following results2’? 

j Q ( ~ > 6 ( f > d ~  = j Q (15) 
f = O  

where Hf is the mean curvature off = Os,’. Introduce a 
new generalized function (distribution) S i ( f >  by the 
following relation: 

The subscript s in S i ( f >  stands for “simple” which 
emphasizes the similarity of S i ( f >  to the one dimen- 
sional S’(x> that behaves as follows: 

j @(x> S’(X> dx = -@’ (O)  (17) 

Now using the results of eqs. (1 5) and (1 6) in Eq. (14), 
we see that the following relation holds: 

S ’ ( f >  = q( f> + 2 Hf S ( f >  (18) 

Equation (1 8)  is next used in Eq. (1 0) which is writ- 
ten as 

02P’  = 41 H ( f >  S ( f >  + 4 2  H ( f >  q( f> 
+ q3 S ( f >  S ( f >  (19) 

where now only the definition of q1 is changed as fol- 
lows: 

and 

(21) 
2 + 2HfMn (K eq.1 

In the following section, we give the full solution of 
Eq. (19). 

Remark. We will not address the solution of the 
FW-H equation with the pure quadrupole term alone: 

The solution using the collapsing sphere approach is 
singularity free and is given 
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3. Solution of Wave Equation With Sources on A 
Moving Open Surface 

In this section, we give the solution to the following 
three wave equations: 

n2+3 = q3(x, t> S(f>S(f> (25) 

The source terms here are similar to those of Eq. (1 9). 
The treatment of these equations are discussed in two 
references by Farassat2>6. We will use the solutions to 
eqs. (23) and (25) given in these references but will give 
here a new and particularly simple solution of Eq. (24). 
The materials presented in these references are essential 
in understanding what follows. 

Let F ( y ;  X, t> = f ( y ,  t -  = [ f ( y ,  2 ) 1 v e t ,  
and F ( y ; x ,  t )  = [ f ( y ,  2)Ivet , where the sub- 
script ret stands for retarded time. _The influence surface 
of the open surface f = 0, f > 0 is called the 
X - surface and is described by F = 0, k > 0 2,6. The 
edge of this surface is the L-curve described by 
F = k = 0 .  Below, we use (x, t)  and ('y, 2 )  as the 
observer and the source space-time variables, respec- 
tively. The solution of Eq. (23) is2>6: 

4 ~ + ~ ( x ,  t> = j X[q1~,,, i;"~ (26) 

where 

(27) 
2 2 A = 1 +M,-2 M ,   COS^ 

Here, M, is the local normal Mach number of the sur- 
face f = 0 and cos0 = n . i where n is the unit outward 
normal to f = 0, i = (x - y) /r  is the unit radiation vector 
from the source to the observer and r = Ix - yl. 

We now consider Eq. (24). The formal solution of 
this equation using the Green's function method is 

1 
4 ~ + ~ ( x ,  t> = j i g 2  2 )  H ( f ) 6 i ( f ) 6 ( g )  d y d ~  (28) 

where g = 2 - t + r/c. We now introduce a new local 
frame (ul,  u2, u3) where u3 = f and u1 and u2 are the 
Gaussian coordinates on f = constant, extended from 
f = 0 along local normal. We assume that u1 is the length 
variable along the projection of i on the local tangent 
plane and u2 is the length variable along i x ii . Let g(2) 

be the determinant of the coefficients of the first funda- 
mental form in the new variables. Let u + g , then Eq. 
(28) becomes 

l 

2 3  
x6 ' , (u3)du  du d2 (29) 

Note that we have used 

and g(2) must be restricted to f = 0 because we are deal- 
ing with Si (u ) where the curvature term of S'(u ) 
has already been removed (see Eq. (18)) and added to 
ql. We must mention here that, in new variables 

> 0,2)  > 21 f 

The condition g =  0 in Eq. (29) implies that 
u = u (u , u , 2 )  . We will use this result in the inte- 
gration of Sl, ( u l )  in Eq. (29). We get 

1 1 

1 2  
g2(y, 2 )  = q2[y (u > 

1 1 2 3  

4 ~ + ~ ( x ,  2 )  
- -  

We have the following results 

(34) 

a = - cot0 v ' tl  S ( f )  
au3 (35) 

where tl is the unit vector along the projection of i on 
the local tangent plane and Tf,.(sum on i )  is the 
Christoffel symbol of second kind in the new coordinate 
system. Note that we have a locally orthogonal frame 
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which gives g(2) = 1 at the origin but because we have a 
curved surface, we get Eq. (34). Therefore, in the rest of 
the algebraic manipulations, we will set g(2) = 1. 

We can now write Eq. (31) in the following form 
after taking the derivative with respect to u3 of the inte- 
grand: 

47@2(x, t> 

- cos0 cos0 - 

+ c J- Tlii q2 du2dT 
rsin 0 

where y is the angle between-? and the edge of the 
open surface described by f = f = 0. 

In our previous work, we have used dT for du2 
where dT is the element of the curve of intersection of 
f = 0 with the collapsing sphere g = 0. We have shown 
also that6>10 

(37) 
cdTdT  - dX 

sin0 A 

where L is the edge of the X - surface described by 
F = k = 0 and 

A. = IVFxVFI = Ais in0 '  (39) 

(42) 
- 2  2 A = 1+M,-2Mvcos8 

cos0 = v ' ? = v ' tl (43 1 

Therefore, Eq. (36) can be written as follows: 

cos 0 cos 0 dX 

~ F = O  1 F>O 

I F>O 

I F = O  (44) 

We have separated the integrals over the X - surface in 
this equation to simplify the analysis of the singularities. 

Finally, the solution of Eq. (25) was also given by 
Farassat2>6 as follows: 

F = O  

We have thus given the full solution of Eq. (19) which 
we refer to as formulation 4. Only Eq. (44) in our analy- 
sis is new. In the next section, we will discuss the 
important question of the singularity of the solution of 
Eq. (19). 

4. A Study of the Singularities of the Solution for 
Supersonic Surfaces 

We will now address the question of the singulari- 
ties in the solution of the FW-H and K equations. There 
has been a general belief among the researchers, the 
authors of this paper included, that the solution of these 
equations lead to nonintegrable singularities for some 
observer space-time variables (x, t). We will show here 
that for a smooth surface, all the singularities of the new 
solution are integrable. We assume that f = 0 is not an 
open surface and thus we only consider the integrals 
over the X - surface : F b ;  x, t) =flv, t - r/c) = 0. See 
articles by Farassat, De Bernardis and Myers for the 
analysis of the singularities of the line integralsl1>l2. 
As will be seen below, the analysis of the singularities 
of the surface integrals is very difficult. 
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There are two kinds of singularities in the surface 
integrals: i) sin0 = 0 ,  i. e., 0 = 0" or 180" but 
A f 0, and ii) A = 0 . We will show below that A = 0 
also implies 0 = 0" or 180" . Condition i) means that at 
some source time, the collapsing sphere g = 0 is tangent 
to the surface f = 0 at a point where M ,  f f 1 . Condition 
ii) means that at some source time g = 0 is tangent to 
f = 0 at a point where M ,  = f 1 . We will prove these 
assertions for appearance of singularity A = 0 below. 
We assume that f = 0 is convex with no saddle points. 

Consider a rotating surface part of which moves at 
supersonic speed. We can write A as follows: 2 

(46) 
2 2 2 . 2  A = ( l -MncOsO)  +M,sin 0.  

Therefore, A = 0 if sin0 = 0 and 1 -M,cos0 = 0 
simultaneously. This means that we must have M ,  = 1 
and 0 = 0" or M ,  = -1 and 0 = 180". The 
geometrical interpretation of these conditions is obvi- 
ous. Since f = 0 is assumed to be moving supersonically 
on part of its surface, there is a curve Y on f = 0 on 
which M ,  = 1 or M ,  = -1 . If at any source time T ~ ,  
the collapsing sphere g = 7 - t + r/c = 0 is tangent to 
f = 0 at a point on Y , then the integrands of the surface 
integrals of formulation 4 are singular for the time 
to = T~ + r / c .  Note that, in general, the curve Y is 
time dependent but it is not so for a hovering rotor oper- 
ating at supersonic tip speed. This is the case we study 
here. 

We must study the two conditions of appearance of 
singularities separately. The reason becomes apparent 
below. Let us first write the kinds of integrals we have: 

F>O (47) 

F>O (48) 

cos 0 cos 0 

F = O  

F>O (49) 

We will show that all the singularities are integrable. 

Condition i): sin0 = 0, A f 0 

Near this point, the intersection of g = 0 and f = 0 is 
a circle of radius b. We can show that if this condition 
appears at 7 = 0, then as 7 + 0, b = C m  where C is 

a constant. We next use the relation" 

where r is the curve of intersection of g = 0 with f = 0. 
Near the point A, above, dT = bdq, sin0 = b / r ,  
where b is the radius of r which is a small circle, and q 
is the azimuthal angle around r. Thus, we have 

(51) _- &- crdqd7 

I, = C j  d7jo [q,lyetdq 

A 

which means if go.', 7) is continuous, then 

2 R  
(52) 

T 

is integrable. Therefore, we have shown the integral 

F>O (53) 

is integrable. 

b = C m  to write the integral in the form 
For I,, we use the fact that sin0 = b/r  and 

(54) 

where a = r(7 = 0 ) .  This integral is convergent. 

The study of convergence of I, is very interesting. 
It appears that this integral is not convergent. We 
manipulate the integrand as follows near the condition 
sin0 = 0 :  

We note that t l  . V2q2 = -aq2/ab and 

and, thus, near the point of tangency off = 0 and g = 0: 

(57) 
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The convergence of I,, therefore, depends on the value 
of the following integral when sin0 + 0 : 

We can easily show that 

The convergence of I3 is, thus, guaranteed. We conclude 
that when sin0 + 0 and A f 0, formulation 4 has only 
removable singularities. 

Condition ii): A = 0 (imDlies sin0 = 0) 

As we have shown above, when g = 0 is tangent to 
f = 0 at a point where M ,  = f l  , we have A = 0 and 
from the tangency condition sin0 = 0 .  The first thing 
we study here is the structure of the X - surface near a 
point where A = 0 .  We then study the problem of the 
singularities of formulation 4. 

We consider the condition 0 = 0" and M ,  = 1 
for a hovering rotor. Figure 1 shows the tangent plane T 
to a point on Y looking edgewise at the moment of tan- 
gency of the collapsing sphere with f = 0 at the point A. 
Note that M ,  = n = i at this moment so that the 
observer is in the plane shown at the center of the col- 
lapsing sphere g = 0. We assume T~ = 0 and r = a at 
the moment of tangency. Since M ,  = 1 at A, we have 
sinp = 1/M where p is the angle that T makes with 
Mach number vector M shown in Fig. 1. We now con- 
sider the plane T in motion for 121 < E where E > 0 is a 
small number. In the frame fixed to T with origin at A as 
shown in Fig. 2, the curve of intersection of g = 0 with 
T, which is a circle is given by the relation 

Where Vu = aw , V ,  = R w  and p and y are defined 
in fig. 2. We use R for the distance from A to the axis of 
rotation. The center of the circle is at the point 
( x , y )  = ( ~ V , T ,  -yVR2) and its radius is V , p l ~  . 

It is clear that as 121 + 0, the X - surface looks like a 
vertex of a cone and has no tangent at the vertex coin- 
ciding with A. The condition of A = 0 is thus 
equivalent to the X - surface becoming pointed and 
having no tangent plane at the point A. 

Let us see what the intersection of g = 0 and T will 
appear to an observer on the tangent plane T. Figure 3 

shows the envelope of the circles of Eq. (60). We reject 
the part of the envelope in the region M < 1 because it 
would imply multiple emission from subsonic region 
which is impossible. This means that we have no inter- 
section of g = 0 and T for 2 < 0. This figure clearly 
shows that the X - surface looks like a cone near A. 

T: Tangent 
Plane 

Fig. 1. The geometric condition for the appearance of 
A = 0: 0 = 0", M ,  = 1 ,  Le., M ,  = i = n . 

p = s i n p =  l/M 
y= cos p / x-axis out 

J 

Fig. 2. The coordinate system used to study the intersec- 
tion of g = 0 with f = 0 near the condition A = 0. 

For convergence of I,, the analysis of condition i) 
applies exactly so that I ,  has removable singularity. The 
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y tan a = (R tan p)/a 
sin p = l/M 
sin p' = cos a Subsonic 

for x < 0 

z-axis out of the plane 
Fig. 3. The shaded area is the trace of the intersection of 
g = 0 in the xy-plane of figure 2 near the condition 
A = 0. It is assumed that 2 = 0 for A = 0. 

study of the convergence of I2 is different since from 
Eq. (60) we see that as A + O ,  we have b = C12 

where C1 is a constant. However, we note that for both 
the FW-H and K equations, q2 is proportional to 

M n -  1 .  We can easily show that as A + 0 ,  2 

M t -  1 = C22 where C2 is another constant. There- 

fore, the convergence of I2 is guaranteed because near 
A = 0, we can write I, as 

2 where qf2 = q 2 / ( M n  - 1 ) .  As a matter of fact, I,, is 
better behaved for condition ii) than condition i)! 

For I,, the convergence study of condition i) applies 
exactly for condition ii). Therefore formulation 4 has 
only removable singularities for condition ii) also. 

We conclude that for a smooth surface, the solution 
of FW-H and the K equations as given here have only 
integrable (removable) singularities for a supersonic 
surface f = 0. The solution of the K equation is, of 
course, known as the Kirchhoff formula for supersonic 
surfaces. 

Remark 1. The solutions of the FW-H and the K 
equation here are valid for all range of the surface speed. 
But we do not recommend to use the present results for 
subsonic surfaces since much more efficient solutions 
for numerical method are a~a i lab le~>~>l ' .  

Remark 2. It can be shown that had we not added 
the surface terms from the quadrupole source term of 
the FW-H equation to the thickness and loading source 
terms, the resulting solution would be singular when the 
condition A = 0 appears. The acoustic pressure signa- 
ture will have a logarithmic singularity which will 
appear as an infinite pulse. Our analysis shows that 
when all the surface sources from thickness, loading and 
quadrupole terms are included in the analysis, there is 
no infinite singularities in the acoustic field. 

5. Concluding Remarks 

We have given the closed form solution of the 
FW-H and the K equations for an open surface. 
Although these solutions are valid for all range of Mach 
numbers, we recommend them for the supersonic 
motion of the surface because of their complexity. We 
have shown that for a smooth surface, the singularities 
of the solutions of both of these equations are integrable. 
The nature of these singularities is explained in this 
paper. It is very interesting to note that for the FW-H 
equation, the thickness and loading source terms alone 
have nonintegrable singularities in the solution. How- 
ever, the addition of the surface source terms from the 
quadrupole source term removes this singularity. This 
is, of course, expected on intuitive grounds. 

We hope that the present work gives further impe- 
tus to numerical applications of our results in high speed 
rotating blade noise prediction. The closed form analytic 
results of this paper open up two other areas of applica- 
tion which could help aeroacousticians in their endeavor 
to reduce the noise of aeronautical machines. These 
areas are: i) qualitative analysis of noise generation 
mechanisms by the analytic study of the appropriate 
integrals in our solutions of the FW-H and K equations, 
and ii) approximate analysis of the radiation field from 
ducted fan inlet and exhaust and other openings that 
radiate sound to an infinite medium. The analysis is sim- 
ilar to the use of the conventional Kirchhoff formula for 
the study of diffraction by an aperture. 

Much work is ahead of us in the order of magnitude 
analysis of the terms in the solution of the FW-H and the 
K equation. Can a deformable body f = 0 be used to 
control noise radiation at high speed? Can we design a 
rigid body with desirable noise radiation property in a 
given direction? 
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Errata For AIAA 98-2375: A Study of 
Supersonic Sources- The Ffowcs Williams- 

Hawkings Equation and the Kirchhoff 
Formula 

F. Farassat, Kenneth S. Brentner and M. H. Dunn 

There is an error in Eq. (30) of this paper presented at the 4th A I M C E A S  
Aeroacoustics Conference in Toulouse, France resulting in a number of 
changes in the solution of the wave Eq.(28). Equation (30) must be corrected 
to 

(30) 
& - 1  1 3 

au 
- -[ sin8 + K ~ ( Z "  cos8 - u sine)] 

1 c  

where K~ is the normal curvature of the surface f = 0 in the direction of tl  

which is the unit vector in the direction of the projection of the radiation vec- 
1 tor P on the local tangent plane. This relation is valid to the first order in u 

and u . Equation (29) must be written as follows: 3 

Equation (3 1) becomes 

du"dz 
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Initially we assume that the collapsing sphere is not tangent to the panel 

f = 0, 7 > 0 as it crosses the panel. It can be shown that 

Then, using the above result and after some algebraic manipulations, Eq. (36) 
becomes 

Equation (44) becomes 

If, however, the collapsing sphere leaves the panel tangentially, another line 
integral similar to that in eq.(44) around the edge of a hole enclosing the 
point of tangency must be added. The limit of this line integral, as the maxi- 
mum diameter of the hole goes to zero, adds the following term to Eq.(44) 
which is not in the paper: 

Here we have defined kr = 1 / r  , sig(.) is the signum function and k( c p )  is 

the normal curvature of the surface f = 0 at the point of tangency T as a 
function of the azimuthal angle cp . The sign convention for the curvature is 
based on assuming n T  = i,, i.e., k(cp) > 0 if the center of curvature is on 
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the same side that nT points into. We assume that the surface f = 0 has 

nonnegative Gaussian curvature everywhere. This is not a severe restriction 
on the surface f = 0 since, in general, one avoids a surface with saddle 
points. Note that at the point of tangency T we have M,. = k M n .  Since q2 

has a factor of Mn - 1,  the above equation is not singular even when the col- 

lapsing equation leaves the panel at a point where there is a Doppler singular- 

ity. Using Euler’s formula k( c p )  = ‘cl ( cos c p )  + ‘c2( sincp) , where k1 and 

k2 are the principal curvatures at the point of tangency, the above integral 

can be integrated in closed form with respect to cp . Under some conditions, 
e.g., when 0 < k2 < k,. < ‘cl, this integral must be interpreted as the principal 

value integral. The limit for a flat point or a cylindrical point can also be 
obtained. The above integral appears in geometrical acoustics and geometric 
diffraction theory. The full discussion of this point as well as the verification 
of the final results will be published The conclusions of the paper are 
correct. Specifically, we claim that we have presented the simplest possible 
formula (designated Formulation 4) for prediction of the noise from high 
speed (transonic and supersonic) moving surfaces . The discussion of singu- 
larities in the paper must be changed in light of the above results. However, 
the corrections given here improve the behavior of the integrals in Formula- 
tion 4 at the singularities which are all removable. 

2 

2 2 

We take this opportunity to bring to the attention of the readers the following 
misprints in this paper: 

1. Equation (29), p 4, replacefwith 7 
1 1 2. Page 4, second column 6’(u ) and 6’,(u ) must be replaced everywhere 

by 6’( u ) and 6’,( u ) , respectively 3 3 

3. Equation (31), p 4, replace g ( 2 )  by g(2) 

4. The left sides of Eqs. (34) and (35) are evaluated at g = 0 
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5. Equation (38), p 5, replace d z  with cdz 

6. Equation (40), p 5, replace N’ with k 

7. Equation (43), p 5, replace 2)  . tl  with 2)  . tl  sin8 

8. First paragraph of Sec. 4, p 5, third line, ‘brief’ must be replaced by 
‘belief‘ 

The authors thank Professor Mark Farris of Midwestern State University, 
Wichita Falls, Texas who pointed out the error in Eq.(30) and independently 
verified our results in detail. He was the 1998 ASEE Summer Faculty Fellow 
at NASA Langley Research Center working with F. Farassat. 
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